PORTFOLIO ANALYSIS

A portfolio can be viewed as a combination of assets held by an investor.

For each asset held, such as company stocks, the logarithmic or continuously compounded rate of return r at time t is given by

$$r_t = log\left(\frac{P_t}{P_{t-1}}\right)$$

where P_t is the stock price at time t, and P_{t-1} is the stock price in the prior period.

The volatility of stock returns, over period N is often estimated by the sample variance σ^2

$$\sigma^2 = \sum_{t=1}^{N} \frac{(r_t - \bar{r})^2}{n-1}$$

where r_t is the return realized in period t, and N is the number of time intervals. As the variance of returns is in units of percent squared, we take the square root to determine the standard deviation σ .

Example (file: xlf-portfolio-analysis-v2.xlsm)

Suppose an investor has a four stock portfolio comprising of shares on the Australian stock market as listed in Figure 1.

	А	В	С	D	E	F	G	Н	1	J	K	L	М		-
1	Portfolio of	four Austra	alian listed	companie	s										1
6															
7	Stock prices	\$ (adjuste	d - closing)	, frequenc	y: monthly	/									
8	Date	AGK	CSL	SPN	SKT		AGK	CSL	SPN	SKT					
9	2/04/2012	14.98	36.66	1.11	4.27		1.55%	2.12%	2.74%	3.82%		J9: =LN(E9	9/E10)		
10	1/03/2012	14.75	35.89	1.08	4.11		5.58%	9.06%	7.70%	4.73%				=	
11	1/02/2012	13.95	32.78	1.00	3.92		-4.49%	5.16%	4.08%	-3.02%					
12	3/01/2012	14.59	31.13	0.96	4.04		1.80%	-2.76%	2.11%	1.00%					
13	1/12/2011	14.33	32.00	0.94	4.00		0.49%	2.56%	0.00%	-2.23%					
14	1/11/2011	14.26	31.19	0.94	4.09		-0.98%	7.76%	-6.19%	-2.18%					
15	3/10/2011	14.40	28.86	1.00	4.18		0.70%	-2.80%	6.19%	-1.66%					
16	1/09/2011	14.30	29.68	0.94	4.25		-7.93%	5.40%	1.07%	-7.26%					
17	1/08/2011	15.48	28.12	0.93	4.57		8.70%	-8.75%	1.08%	-0.44%					
18	1/07/2011	14.19	30.69	0.92	4.59		-3.19%	-7.44%	-2.15%	6.99%					
19	1/06/2011	14.65	33.06	0.94	4.28		1.93%	-2.51%	1.07%	-1.62%					
20	2/05/2011	14.37	33.90	0.93	4.35		-1.18%	-1.32%	5.53%	2.33%					
21	1/04/2011	14.54	34.35	0.88	4.25										
22							AGK	CSL	SPN	SKT					
23						Minimum	-0.07929	-0.08746	-0.06188	-0.07259		J23: =MIN	(J9:J20)		
24						Maximum	0.087011	0.09064	0.076961	0.069927		J24: =MAX	(J9:J20)		
25		Descripti	ve statistic	s L		Average	0.002484	0.005424	0.019349	0.000391		J25: =AVE	RAGE(J9:J20)	
26		using Exc	el 2007 cel	II		Std Dev.p	0.041997	0.054857	0.036297	0.037564		J26: =STD	EVP(J9:J20)		
27		formulas				Std Dev.s	0.043864	0.057296	0.037911	0.039234		J27: =STD	EV(J9:J20)		
28						Variance.p	0.001764	0.003009	0.001317	0.001411		J28: =VAR	P(J9:J20)		
29						Variance.s	0.001924	0.003283	0.001437	0.001539		J29: =VAR	(J9:J20)		
30															į

Fig 1: Excel functions - descriptive statistics

The stock codes AGK, CSL, SPN, and SKT from figure 1 are described in figure 2.

	А	В	С	D	E	F	G	Н	1	J	K	L	М	N	
1	Portfolio of	four Austr	alian listed	l companie	25										
2		AGK	AGL Energ	y Ltd: oper	rates Austr	alia's larges	t retail ene	ergy and du	ual fuel cus	tomer bas	e				
3		CSL	CSL Limite	d: pharma	ceutical an	nd diagnosti	c products								
4		SPN	SP Ausnet	: Electricit	y transmis	sion and dis	tribution a	nd gas dist	ribution						
5		SKT	SKY Netwo	ork Televis	ion Limite	d: New Zeal	and's pre-	eminent p	ay televisio	on operato	r.				
6															

Fig 2: Portfolio components - description

1. Descriptive statistics

Price data for the four stocks is obtained from Yahoo Finance and is filtered for monthly price observations. In figure 1, Column A of the worksheet shows the date for the first trading day of the month. Closing prices for the four stocks are in the range B9:E21. The corresponding continuously compounded return series, using the Excel LN function, are calculated in the range G9:J21. Summary information from Excel statistical functions are shown in rows 23 to 27, using the Excel 2007 formulas for standard deviation and variance (the Excel 2010 equivalent formula is in column F).

Descriptive statistics can also be produced by using the **Descriptive Statistics** item from the Data Analysis dialog as shown in figure 3.

Figure 3: Data Analysis dialog box – with Descriptive Statistics selected

The output for the Descriptive Statistics is shown in the New Worksheet ply in figure 4.

	А	В	С	D	E	F	G	Н	1	
1	AGK		CSL		SPN		SKT			
2										
3	Mean	0.002484	Mean	0.005424	Mean	0.019349	Mean	0.000391		
4	Standard Error	0.012662	Standard Error	0.016540	Standard Error	0.010944	Standard Error	0.011326		
5	Median	0.005933	Median	0.004020	Median	0.015932	Median	-0.010295		
6	Mode	#N/A	Mode	#N/A	Mode	0.010695	Mode	#N/A		
7	Standard Deviation	0.043864	Standard Deviation	0.057296	Standard Deviation	0.037911	Standard Deviation	0.039234		
8	Sample Variance	0.001924	Sample Variance	0.003283	Sample Variance	0.001437	Sample Variance	0.001539		
9	Kurtosis	0.668948	Kurtosis	-0.981764	Kurtosis	0.744701	Kurtosis	-0.012231		
10	Skewness	0.087421	Skewness	-0.114118	Skewness	-0.577340	Skewness	0.103161		
11	Range	0.166301	Range	0.178096	Range	0.138836	Range	0.142521		
12	Minimum	-0.079289	Minimum	-0.087456	Minimum	-0.061875	Minimum	-0.072594		
13	Maximum	0.087011	Maximum	0.090640	Maximum	0.076961	Maximum	0.069927		
14	Sum	0.029813	Sum	0.065084	Sum	0.232193	Sum	0.004695		
15	Count	12	Count	12	Count	12	Count	12		
16										Ŧ

Figure 4: Analysis ToolPak (data analysis) - descriptive statistics

Rows 7 and 8 of the worksheet shown in figure 4 have values for the sample standard deviation and sample variance respectively (rows 7 and 8). We will see later, that the **Data Analysis** > **Covariance** item returns population values, not sample values.

When assets are held as part of a portfolio, an important consideration is the amount of co-movement between portfolio components.

2. Covariance

The amount of co-movement can be measured by the covariance statistic, and is calculated on a pairwise basis. The formula for the sample covariance $\sigma_{i,j}$ for the return vectors of stock *i* and stock *j* is

$$\sigma_{i,j} = \sum_{t=1}^{N} \frac{(r_{i,t} - \overline{r_i})(r_{j,t} - \overline{r_j})}{n-1}$$

There are number of ways the estimation can be operationalized and some techniques are described in this section. Methods include the Analysis ToolPak – Covariance item (figure 3), and Excel functions listed here.

Excel 2007

COVAR(array1,array2)	Returns covariance, the average of the products of paired deviations
Excel 2010	
COVARIANCE.S(array1,array2)	Returns the sample covariance, the average of the products deviations for each data point pair in two data sets
COVARIANCE.P(array1,array2)	Returns covariance, the average of the products of paired deviations

The worksheet in figure 7 shows output for the Analysis ToolPak (ATP) covariance item in rows 32 to 36. The covariance matrix, from the ATP is a lower triangular table, meaning it only returns the main diagonal elements, and the lower left elements. By definition, the covariance of a vector with itself, is the variance of the vector. Thus, the value in cell G33 in figure 5, $\sigma_{AGK,AGK} = 0.001764$, is the same value as the population variance returned by the Excel VARP function shown in figure 1 cell G28.

	Α	В	С	D	E	F	G	Н	1	J	К	L	М	
31														
32							AGK	CSL	SPN	SKT				
33		Covarian	coucing A			AGK	0.001764							
34		covarian	ce using A	IP		CSL	-0.00069	0.003009						
35		covarian	centern.			SPN	0.000338	0.000127	0.001317					
36						SKT	0.000608	-0.0006	0.000223	0.001411				
37														
38														
39		0					AGK	CSL	SPN	SKT				
40		Covarian	ICE USING			AGK	0.001764	-0.000689	0.000338	0.000608		J40: =COV	AR(AGK,SH	(Т)
41		function	with range			CSL	-0.000689	0.003009	0.000127	-0.000599		J41: =COV	AR(CSL,SK	T)
42		names.	withing			SPN	0.000338	0.000127	0.001317	0.000223		J42: =COV	AR(SPN,Sk	(T)
43						SKT	0.000608	-0.000599	0.000223	0.001411		J43: =COV	AR(SKT,SK	T)
44														

Fig 5: Variance covariance matrix - ATP and COVAR versions

In Excel 2007 and earlier, there is only one covariance function, **COVAR** and it returns the population covariance for two return vectors. In figure 5, rows 39 to 43, the **COVAR** function uses Excel range names for each of the return vectors. The return values are population estimates.

Construction of the individual cell formulas can be simplified by using range names with the **INDIRECT** function. To do this:

- Copy and paste the stock codes vector to the range G46:J46.
- Using **Paste Special > Transpose**, paste the transposed stock codes vector to F47.

- Enter the formula =COVAR (INDIRECT (F\$47), INDIRECT (\$G46)) at G47.
- Copy and paste the formula to complete the variance covariance matrix.

The return values, and cell formulae are shown in figure 6.

	Α	В	С	D	E	F	G	Н	1	J	K	L	М	
45														
46							AGK	CSL	SPN	SKT				
47		Covarian	ice using			AGK	0.001764	-0.000689	0.000338	0.000608				
48		Excel 200	and and			CSL	-0.000689	0.003009	0.000127	-0.000599				
49		INDIREC	anu Tfunction			SPN	0.000338	0.000127	0.001317	0.000223				
50		INDIALC	r function.			SKT	0.000608	-0.000599	0.000223	0.001411				
51														
52							G47: =CO	VAR(INDIR	ECT(\$F47),	INDIRECT(G\$46))		
53							G48: =CO	VAR(INDIR	ECT(\$F48),	INDIRECT(G\$46))		
54							G49: =CO	VAR(INDIR	ECT(\$F49),	INDIRECT(G\$46))		
55							G50: =CO	VAR(INDIR	ECT(\$F50),	INDIRECT(G\$46))		
56														
57								H47: =CO	AR(INDIR	ECT(\$F47),	INDIF	RECT(H\$46))	
58								H48: =CO	AR(INDIR	ECT(\$F48),	INDIF	RECT(H\$46))	
59								H49: =CO	AR(INDIR	ECT(\$F49),	INDIF	RECT(H\$46))	=
60								H50: =CO	AR(INDIR	ECT(\$F50),	INDIF	RECT(H\$46))	
61														
62														•

Fig 6: Variance covariance matrix - COVAR and INDIRECT version

3. Covariance with VBA

The Excel 2007 **COVAR** function returns the population covariance. To estimate the sample covariance, the custom function Covar_s has been developed.

Here is the code.

VBA: Covar_s (Available in the XLFProject.XLF_Module)

```
Function Covar_s(InArray1 As Variant, InArray2 As Variant) As Variant
    Dim NumRows As Long, NumRows1 As Long, NoRows2 As Long
    Dim i As Long, j As Long
    Dim InArrayType1 As String
    Dim InArrayType2 As String
    Dim InAlAve As Double, InA2Ave As Double
    Dim Temp1() As Double, Temp2 As Double
10
    On Error GoTo ErrHandler
20
    InArrayType1 = TypeName(InArray1)
30
    InArrayType2 = TypeName(InArray2)
40
    If InArrayType1 = "Range" Then
50
        NumRows = UBound(InArray1.Value2, 1) -
          LBound(InArray1.Value2, 1) + 1
60
    ElseIf InArrayType1 = "Variant()" Then
70
        NumRows = UBound(InArray1, 1) - LBound(InArray1, 1) + 1
80
    Else
90
        GoTo ErrHandler
100
    End If
```

```
110
    ReDim Temp1(1 To NumRows)
120
    With Application.WorksheetFunction
130
    InAlAve = .Average(InArray1)
140
    InA2Ave = .Average(InArray2)
150
         For i = 1 To NumRows
160
             Temp1(i) = (InArray1(i) - InA1Ave) * (InArray2(i) - InA2Ave)
170
        Next i
        Temp2 = .Sum(Temp1) / (NumRows - 1)
180
190
    End With
200
        Covar s = Temp2
210
    Exit Function
    ErrHandler:
220
        Covar s = CVErr(xlErrNA)
    End Function
```

Covar_s is the sample version of the $\sigma_{i,j}$ equation with n - 1 in the denominator rather than n. The sample covariance is calculated in lines 150 to 180 of the code. The For ... Next loop at lines 150 to 170 returns the numerator of the equation as a vector to the array named Temp1. The sum of Temp1 . Sum (Temp1) is then divided by n - 1 in line 180.

Covar_s is useful if you open the workbook on an Excel 2007 or earlier platform. If you only use Excel 2010 or later, then **COVARIANCE.S** or **COVARIANCE.P** are available.

Figure 7 show the output for the **Covar_s** custom function, and the Excel 2010 **COVARIANCE.S** function.

	Α	В	С	D	E	F	G	Н	1	J	K	L	М	
62														
63							AGK	CSL	SPN	SKT				
64		Covariar	nce (sampl	e)		AGK	0.001924	-0.00075	0.000369	0.000663				
65		and Ever	Var_s Tunct	ion		CSL	-0.00075	0.003283	0.000138	-0.00065				
66		function				SPN	0.000369	0.000138	0.001437	0.000244				
67						SKT	0.000663	-0.00065	0.000244	0.001539				
68														
69							G64: =Cov	ar_s(INDIR	RECT(\$F64),	INDIRECT(G\$63))		
70							G65: =Cov	ar_s(INDIR	RECT(\$F65),	INDIRECT(G\$63))		
71							G66: =Cov	ar_s(INDIR	RECT(\$F66),	INDIRECT(G\$63))		
72							G67: =Cov	ar_s(INDIR	RECT(\$F67),	INDIRECT(G\$63))		
73														
74														
75		Covarian	eo (compl	2			AGK	CSL	SPN	SKT				
76		ExcelIN	DIRECT fund	e)		AGK	0.001924	-0.00075	0.000369	0.000663				
77		and Exce	2010			CSL	-0.00075	0.003283	0.000138	-0.00065				
78		COVARIA	ANCE.S fun	ction		SPN	0.000369	0.000138	0.001437	0.000244				
79						SKT	0.000663	-0.00065	0.000244	0.001539				
80														
81							G76: =CO\	/ARIANCE.	S(INDIREC	T(\$F76),IN	DIREC	CT(G\$63))		
82							G77: =CO\	ARIANCE.	S(INDIREC	T(\$F77),IN	DIREC	CT(G\$63))		
83							G78: =CO\	/ARIANCE.	S(INDIREC	T(\$F78),IN	DIREC	CT(G\$63))		
84							G79: =CO\	ARIANCE.	S(INDIREC	T(\$F79),IN	DIREC	CT(G\$63))		
85														

Fig 7: UDF Covar_s and Excel 2010 COVARIANCE.S

The example in figure 7 uses a nested function in combination with range names.

The next code section provides a custom function to return the variance-covariance as a single array formula. It uses the Excel 2007 **COVAR** function, for the population covariance, at line 170, but the code is easily modified. The function is named **VarCovar_p** and is entered as an array CSE formula.

VBA: VarCovar_p (Available in the XLFProject.XLF_Module)

```
Function VarCovar p(InMatrix As Variant) As Variant
    Dim NumRows As Long, numCols As Long
    Dim i As Long, j As Long
    Dim InMatrixType As String
    Dim Temp() As Double
10
    On Error GoTo ErrHandler
20
    InMatrixType = TypeName(InMatrix)
30
    If InMatrixType = "Range" Then
40
        NumRows = UBound (InMatrix.Value2, 1) -
          LBound (InMatrix.Value2, 1) + 1
50
        numCols = UBound(InMatrix.Value2, 2) -
          LBound (InMatrix.Value2, 2) + 1
60
        ReDim Temp(1 To numCols, 1 To numCols)
70
    ElseIf InMatrixType = "Variant()" Then
80
        NumRows = UBound(InMatrix, 1) - LBound(InMatrix, 1) + 1
90
        numCols = UBound(InMatrix, 2) - LBound(InMatrix, 2) + 1
100
        ReDim Temp(1 To numCols, 1 To numCols)
110
    Else
120
        GoTo ErrHandler
130
    End If
140
    With Application.WorksheetFunction
150
        For i = 1 To numCols
160
            For j = 1 To numCols
170
                 Temp(i, j) = .Covar(.Index(InMatrix, 0, i), _
           .Index(InMatrix, 0, j))
180
            Next j
190
        Next i
200
    End With
210
        VarCovar p = Temp
220
    Exit Function
    ErrHandler:
230
        VarCovar p = CVErr(xlErrNA)
    End Function
```

To use VarCovar_p function do the following:

- Determine the dimensions of the returned variance-covariance (VCV) matrix.
- Give the returns data at G9:J21 a name, such as Returns.
- Select the range where the result is to be returned to.
- In the formula bar enter =VarCovar_p (Returns)
- Hit Control+Shift+Enter to complete the array formula.
- Add labels as shown in figure 5.

	А	В	С	D	E	F	G	Н	1	J	K	L	М	
38														
39							AGK	CSL	SPN	SKT				
40		Covarian	ice using			AGK	0.001764	-0.000689	0.000338	0.000608		J40: =COV	AR(AGK,SH	(Т)
41		function	with range			CSL	-0.000689	0.003009	0.000127	-0.000599		J41: =COV	AR(CSL,SK	т)
42		names.	withinange			SPN	0.000338	0.000127	0.001317	0.000223		J42: =COV	AR(SPN,Sk	(Т)
43						SKT	0.000608	-0.000599	0.000223	0.001411		J43: =COV	AR(SKT,SK	T)
86														
87							AGK	CSL	SPN	SKT				
88		Covarian	ce (popula	ation)		AGK	0.001764	-0.00069	0.000338	0.000608				
89		UDF: Arra	ay formula			CSL	-0.00069	0.003009	0.000127	-0.0006				
90		VarCovar	r_p as CSE.			SPN	0.000338	0.000127	0.001317	0.000223				
91						SKT	0.000608	-0.0006	0.000223	0.001411				
92														
93							G88: =Var	Covar_p(Re	eturns)					
94							G89: =Var	Covar_p(Re	eturns)					
95							G90: =Var	Covar_p(Re	eturns)					
96							G91: =Var	Covar_p(R	eturns)					
97														

Fig 8: User defined array function - VarCovar_p

In the next section we examine the correlation coefficient.

4. Correlation

Correlation is a standardized measure of co-movement. The formula to calculate the correlation $\rho_{i,j}$ between the returns for stocks *i* and *j* is

$$\rho_{i,j} = \frac{\sigma_{i,j}}{\sigma_i \sigma_j}$$

where $\sigma_{i,j}$ is the covariance, and σ_i and σ_j are the standard deviation, and stocks *i* and *j* respectively. The Excel function is **CORREL**.

Excel

CORREL(array1,array2)	Returns the correlation coefficient between two data
	sets

The correlation coefficient ρ is bounded in the range $-1 \le \rho_{i,j} \le 1$. A correlation of -1 is perfect negative correlation, a correlation of +1 is perfect positive correlation, and a correlation of 0 represents zero correlation.

	А	В	С	D	E	F	G	Н	1	J	Κ	L	М	N	
97															
98							AGK	CSL	SPN	SKT					
99		Correlati	on: Excel C	ORREL		AGK	1.00000	-0.29900	0.22179	0.38544					
100		function	and INDIR	ECT		CSL	-0.29900	1.00000	0.06374	-0.29078					
101		function				SPN	0.22179	0.06374	1.00000	0.16381					
102						SKT	0.38544	-0.29078	0.16381	1.00000					
103															
104							G99: =COF	REL <mark>(INDIR</mark>	ECT(\$F99),	INDIRECT(G\$98))			
105							G100: =CC	RREL(INDI	RECT(\$F10	0),INDIREC	T(G\$	98))			
106							G101: =CC	RREL(INDI	RECT(\$F10	1), INDIREC	T(G\$	98))			
107							G102: =CC	RREL(INDI	RECT(\$F10	2),INDIREC	T(G\$	98))			
108															

Fig 9: Correlation matrix - for the four stock portfolio

The correlation coefficient is invariant to the use of population or sample estimates. Provided the numerator and denominator are all population, or all sample estimates, the returned value is the same. In other words, apply the consistency principle. See figure 10 for returned values, in both cases the value is -0.2990.

	А	В	С	D	E	F	G	Н	1	J	K	L	М	N	E
108															
109		Validatio	n												
110		Populati	on												
111			CovarP _{CSL}	AGK	-0.00069		E109: -0.0	006888330	91647805						
112			SD_P _{CSL}		0.054857		E110: 0.05	5485691933	65494						
113			SD_P _{AGK}		0.041997		E111: 0.04	199667955	5981						
114			Corr _{CSL,AGK}		-0.29900		E112: =E1	09/(E110*E	111)						
115															
116		Sample													
117			CovarS _{CSL,}	AGK	-0.00075		E114: -0.0	007514542	81797605						
118			SD_S _{CSL}		0.057296		E115: 0.05	5729618358	63439						
119			SD_S _{AGK}		0.043864		E116: 0.04	4386410121	01665						
120			Corr _{csl,AGK}		-0.29900		E117: =E1	14/(E115*E	116)						
121															

Fig 10: Correlation coefficient - from population and sample estimates

Excel has limited ability to produce a 3D scatter plot of the correlation matrix in figure 9 and a line chart line charts of the return series (figure 11), can be difficult to interpret.

Fig 11: Plot of monthly returns

Instead we produce pair wise scatter plots of selected correlation relationships.

From the data in figure 9, the key features for the $-1 \le \rho_{i,i} \le 1$ are:

- Largest positive correlation: AGK, SKT: +0.385 (Figure 12)
- Largest negative correlation: AGK, CSL: -0.299 (Figure 13)
- Smallest correlation: SPN, CSL: 0.064 (Figure 14)

Figure 12: Largest positive correlation: AGK, SKT: +0.385

The positive correlation for AGK, SKT is shown by the positive (upward) slope of linear trend line in figure 12. In contrast, the negative correlation between the returns for AGK and CSL is shown by the negative (downward) slope of the linear trend line (figure 13)

Fig 13: Largest negative correlation - AGK, CSL: -0.299

In the case where the correlation is close to zero, then the linear trend line is more flat, as shown in figure 14.

Small correlation:	SPN,CSL +0.064					
Positive correlatio	n, so trend line is	s upward sl	oping, l	out less	steep	
than Chart 2 (a)						
	10.00%					
	10.00%				•	
•	8.00%					
	6.00%	•	•			
	4.00%					
	2.00%	*				
	0.00%					
-8.00% -6.00% -4	.00% -2. <u>00%</u> 0.0	0% 2.00%	4.00%	6.00%	8.00% 1	0.00%
	-4.00%	· · ·		•		
	-6.00%					
	* 8 00%					
	-10.00%	*				
	-10.00%					
	SPN CSL		r (SPN C	SL)		

Figure 14: Smallest correlation: SPN, CSL: 0.064

5. The portfolio

The returns r_p on a portfolio are the weight sum of the returns for the individual assets

$$r_p = \sum_{i=i}^N \omega_i r_i$$

If the investor has portfolio weights of a = 0.1, b = 0.2, c = 0.4, d = 0.3, then the portfolio return is shown in figure 15.

	Α	В	С	D	E	F	G	н	1	J	K	L	М	-
4														
5														
6		Portfolio returns.		AGK	CSL	SPN	SKT							
7		Average		0.002484	0.005424	0.019349	0.000391							
8		Weights		0.1	0.2	0.4	0.3							
9														
10		r _p =	0.00919						C9: =SUM	(D6*D7,E6	*E7,F6*F7,	G6*G7)		
11		r _p =	0.00919						C11: =SUN	/(Weights	*Average)			
12		r _p =	0.00919						C12: =SUN	IPRODUCT	(Average,	Weights)		
13		r _p =	0.00919						C13: =MN	IULT(Weig	hts,TRANS	POSE(Aver	age))	≡
14														
15														

Fig 15: Portfolio returns

In figure 15, portfolio returns are estimated using the formula, line 10.

The Excel **SUMPRODUCT** function is in row 12, and array formulae, are in rows 11 and 13. Both require **Control+Shift+Enter**.

The variance of the returns σ_p^2 on a portfolio are estimated by the double summation formula

$$\sigma_{\rm p}^2 = \sum_{i=1}^N \sum_{j=1}^N \omega_i \omega_j \sigma_{i,j}$$

For a four asset portfolio, the variance of returns is:

$$\begin{split} \sigma_p^2 &= \omega_a^2 \sigma_a^2 + \omega_b^2 \sigma_b^2 + \omega_c^2 \sigma_c^2 + \omega_d^2 \sigma_d^2 + \\ 2\omega_a \omega_b \sigma_{a,b} + 2\omega_a \omega_c \sigma_{a,c} + 2\omega_a \omega_d \sigma_{a,d} + 2\omega_b \omega_c \sigma_{b,c} + 2\omega_b \omega_d \sigma_{b,d} + 2\omega_c \omega_d \sigma_{c,d} \end{split}$$

where the stocks are indexed $\{a, b, c, d\}$. See rows 23 to 33 of the worksheet in figure 16.

_																
	Α	В	С	D	E	F	G	Н		J	K	L	M	N	0	
15																
16		Portfolio variance	1													
17		Population covari	ance	AGK	CSL	SPN	SKT									
18			AGK	0.001764	-0.00069	0.000338	0.000608									
19			CSL	-0.00069	0.003009	0.000127	-0.0006									
20			SPN	0.000338	0.000127	0.001317	0.000223									
21			SKT	0.000608	-0.0006	0.000223	0.001411									
22																
23			1.76372E-05						C23: =D8/	2*D18						
24			0.000120371						C24: =E8^	2*E19						
25			0.000210798						C25: =F8^	2*F20						
26			0.000126995						C26: =G84	2*G21						
27			-2.75533E-05						C27: =2*D	8*E8*E18						
28			2.7047E-05						C28: =2*D	8*F8*F18						
29			3.6483E-05						C29: =2*D	8*G8*G18						
30			2.03077E-05						C30: =2*E	8*F8*F19						=
31			-7.19029E-05						C31: =2*E	8*G8*G19						
32			5.36045E-05						C32: =2*F	8*G8*G20						
33		Var _p	0.000513787						C33: =SUN	A(C23:C32)						
34		Var _p	0.000513787						C34: =MN	IULT(Weig	nts,MMULT	(VCV,TRAI	NSPOSE(W	eights)))		
35																
36		SDp	0.02266688						C36: =SQF	RT(C34) 2.	266688048	92243E-02				
37		SDp	2.27%						C37: =C36	2.266688	04892243E	-02				
38																

Fig 16: Portfolio variance - calculated using the algebraic version (rows 23 to 33), and the shorter matrix version (row 34)

We can also use the Excel array formula to estimate the variance

```
Excel
```

MMULT(array1,array2)	Returns the matrix product of two arrays
TRANSPOSE(array)	Returns the transpose of an array

In matrix notation, the portfolio variance is

 $\sigma_p^2 = \omega \Sigma \omega^T$

Where ω is a row vector of weights, ω^T is its transpose, and Σ is the variance-covariance matrix. In Excel, using the range name **Weights** for ω and **VCV** for Σ , the cell formula is

=MMULT (Weights, MMULT (VCV, TRANSPOSE (Weights))

entered as an array formula. See row 34 of the worksheet in figures 16 and 17.

Portfolio Analysis

	А	B	C	D	E	F	G	Н	1	J	К	L	M	N	0
4															
5															
6		Portfolio returns.		AGK	CSL	SPN	SKT								
7		Average		0.002484	0.005424	0.019349	0.000391								
8		Weights		0.1	0.2	0.4	0.3			1		_	-		
9				-											
15	-	promoned	0.000	- Jan	- 1-	یں۔ خب	and the second	a desta a se	C1 =SU	107*00 0	7*E8,F7*E0	and a	- man .	pro 1	
						-					-				
14	1	r _p =	0.5				and the second								1.0
15															
16		Portfolio variance	2												
17		Population covar	iance	AGK	CSL	SPN	SKT								
18			AGK	0.001764	-0.00069	0.000338	0.000608								
19			CSL	-0.00069	0.003009	0.000127	-0.0006	-							
20			SPN	0.000338	0.000127	0.001317	0.000223	_							
21			SKT	0.000608	-0.0006	0.000223	0.001411								
22															
23			1.76372E-05						C23: =D8^	2*D18					
24			0.000120371						C24: =E8^	2*E19					
25			0.000210798						C25: =F8^:	2*F20					
26			0.000126995						C26: =G8^	2*G21					
27			-2.75533E-05						C27: =2*D	8*E8*E18		_			
28			2.7047E-05						C28: =2*D	8*F8*F18		-			_
29			3.6483E-05						C29: =2*D	8*G8*G18		_			
30			2.03077E-05						C30: =2*E	8*F8*F19					
31			-7.19029E-05						C31: =2*E	8*G8*G19					
32			5.36045E-05						C32: =2*F	8*G8*G20				1	
33		Varp	0.000513787						C33: =SUN	A(C23:C32)	1.10.000				
34		Varp	0.000513787						C34: =MM	ULT(Weig	hts,MMUL1	(VCV,TRAI	NSPOSE(W	/eights)))	
35															
36		SDp	0.02266688						C36: =SQR	T(C34) 2.	266688048	92243E-02			
37		SD _p	2.27%						C37: =C36	2.266688	04892243E-	-02			
38		and the second													

Fig 17: Portfolio variance in Excel function format.

6. Portfolio charts

The x-y scatter plot of the portfolio and components is shown in figure 18. The figure indicates that the return for SPN is almost four times greater than the other components. Due to the covariance structure, the standard deviation of portfolio is lower than the standard deviation of any of the component stocks.

In the next section we describe a method to rebalance the portfolio, in the case where the investor wants to achieve a different risk return tradeoff.

Fig 18: Portfolio and components

7. Portfolio optimization

Target 1: Suppose that the investor wants to rebalance the portfolio to achieve a target return of 1.5% per month with the lowest possible standard deviation. The investor assumes that the historical information can be used as an estimate of expected returns and risk in the future. In addition bounds are set on the proportion of funds in each stock. The weights in the individual stocks AGK, CSL, and SPN must be in the range 10% to 30%, the weight in SKT must not be less than 10% and must not exceed 60%. By definition, the weights must sum to 1.

To solve the portfolio mix, subject to the constraints imposed, we will use the SOLVER add-in.

The **SOLVER** add-in is located on the Data tab, and the Parameter settings are shown in figure 19. We use the Set Objective, to Minimize the standard deviation of the portfolio, cell \$H\$42. The weights in range \$D\$44:\$G\$44, are set in the By Changing Variable Cells parameter, and the constraints are set in the Subject to the Constraints parameter.

ser objective.	\$H\$42			1
To: 🔘 Max	Min		0.012	
By Changing Variable Ce	lls:			
\$D\$44:\$G\$44				1
Subject to the Constrain	ts:			
\$D\$44:\$G\$44 <= \$D\$4 \$D\$44:\$G\$44 >= \$D\$4 \$H\$41 = 0.015	5:\$G\$46 5:\$G\$45		*	Add
\$H\$44 - 1				Change
			(Delete
			[Reset All
			-	Load/Save
Make Unconstrained	Variables Non-	Negative		
Select a Solving Method	Si	mplex LP		Ogtions
Solving Method				
Select the GRG Nonline engine for linear Solver	ar engine for S Problems, and	olver Problems that are select the Evolutionary	smooth nonlinear. S y engine for Solver p	Select the LP Simplex roblems that are

Fig 19: Setting the Solver Parameters - for Target 1

When the scenario for Target 1 is run, we find that Solver could not find a feasible solution. In other words, subject to the constraints, no combination of stocks achieved the target return of 1.5% per month, as set in cell \$H\$41.

uld not find a feasible solution.	
	Re <u>p</u> orts
Solver Solution	Feasibility Feasibility-Bounds
ore Original Values	
n to Solver Parameters Dialog	O <u>u</u> tline Reports
Cancel	<u>S</u> ave Scenario
Solver could not find a feasible solu	tion.
Solver can not find a point for which	h all Constraints are satisfied.
	uld not find a feasible solution. Solver Solution ore Original Values In to Solver Parameters Dialog Cancel Solver could not find a feasible solu Solver can not find a point for which

Fig 20: No feasible solution - with Target 1 constraints, using the Simplex LP method.

After some experimentation, the set of constraints in Target 2 is evaluated.

Target 2: In this scenario, the maximum weight for SPN is increased to 60%, and the target return is set to 1.2% per month. See figure 21, for the weights range, and figure 22 for the revised Solver Parameter set.

	Α	В	С	D	E	F	G	Н	1	J	К	L
40		Portfolio returns.		AGK	CSL	SPN	SKT	Port				
43												
45		Constraints	MinW	0.10	0.10	0.10	0.10					
46			MaxW	0.30	0.30	0.60	0.60					
47												

Fig 21: Target 2 - revised weight constraints. SPN has increased to 0.6 weight.

	\$H\$42	I		8
To: <u>Max</u>	Min	<u> </u>	0.012	
By Changing Variable Co	ells:			
\$D\$44:\$G\$44				E
Subject to the Constrain	nts:			
\$D\$44:\$G\$44 <= \$D\$4 \$D\$44:\$G\$44 >= \$D\$4 \$H\$41 = 0.012	6:\$G\$46 5:\$G\$45		*	Add
\$H\$44 - 1				Change
				Delete
			[Reset All
			*	Load/Save
Make Unconstrained	l Variables Non-	Negative		
Select a Solving Method	: G	RG Nonlinear	- [Ogtions
Solving Method				
Select the GRG Nonline engine for linear Solve	ear engine for S r Problems, and	olver Problems that are select the Evolutionar	e smooth nonlinear. S y engine for Solver p	Select the LP Simplex roblems that are

Fig 22: Target 2 - with revised constraints, and also selecting the GRG Nonlinear method.

After switching to the GRG Nonlinear method, a solution was found as shown in figure 23.

olver found a solution. All Constraints and o	ptimality
conditions are satisfied.	Reports
 Keep Solver Solution Restore Original Values 	Answer Sensitivity Limits
Return to Solver Parameters Dialog	Outline Reports
<u>Q</u> K	<u>Save Scenario</u>
Solver found a solution. All Constraints and op satisfied.	timality conditions are
When the GRG engine is used, Solver has foun solution. When Simplex LP is used, this means optimal solution.	d at least a local optimal Solver has found a global

Fig 23: Solution found.

		H42	• (* f _x	{=SQRT(MM	ULT(D44:G4	44,MMULT(VCV,TRAN	ISPOSE(D4	4:G44))))}						
	А	В	С	D	E	F	G	Н	1		J	К	L	М	N	0
40		Portfolio retur	ns.	AGK	CSL	SPN	SKT	Port								
41		Average		0.2484%	0.5424%	1.9349%	0.0391%	1.2000%	H41: =	SUMP	RODUCT	(D41:G41,	D44:G44)			
42		Std Dev.p		4.1997%	5.4857%	3.6297%	3.7564%	2.4918%	H42: =	=SQRT((MMULT	(D44:G44,N	MULT(VC	V,TRANSPO	DSE(D44:G4	44))))
43																
44			W	0.12	0.18	0.55	0.15	1.00	H44: =	=SUM(I	D44:G44)				
45		Constraints	MinW	0.10	0.10	0.10	0.10									
46			MaxW	0.30	0.30	0.60	0.60									
47																

Fig 24: The solution weight

8. Portfolio variance with VBA

In this section, is the VBA code for the function PortSD to estimate the portfolio standard deviation.

VBA: PortSD (Available in the XLFProject.XLF_Module)

```
Function PortSD(Weights As Range, VCV As Range) As Double
Dim PortVar As Variant
With Application.WorksheetFunction
PortVar = .MMult(Weights, .MMult(VCV, .Transpose(Weights)))
PortSD = Sqr(.Sum(PortVar))
End With
End Function
```

The weights range is a row vector. The function uses the Excel functions MMULT, TRANSPOSE, and SUM. In row 30, is the VBA square root function, SQR.

The procedure has two important aspects. In line 20, the portfolio variance is calculated. The return value from the formula is a 1×1 array, thus PortVar is of the type Variant. VBA cannot take the square root of a 1×1 array, so in line 30, we take the sum of the array, to return a non-array number, then take the square root.

Resources

- The Excel file for this is available at: <u>http://excelatfinance.com/xlf/xlf-portfolio-analysis-v2.xlsm</u>
- An online version of section 1 Descriptive Statistics, and section 2 covariance is available at: <u>http://excelatfinance.com/online/topic/portfolio-analysis-excel/</u>

Portfolio Analysis

Published: 21 May 2012 Revised (ver 2): 17 October 2015 Author: Ian O'Connor :: ioconnor@excelatfinance.com